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I That is: deterministic automata with deterministic transpose.

1 2 3
b a

b

a

1 2 3
b a

b

a



Bideterministic Finite Automata

I Automata that are both deterministic and codeterministic.

I That is: deterministic automata with deterministic transpose.

1 2 3
b a

b

a

1 2 3
b a

b

a



Bideterministic Finite Automata

I Automata that are both deterministic and codeterministic.
I That is: deterministic automata with deterministic transpose.

1 2 3
b a

b

a

1 2 3
b a

b

a



Bideterministic Finite Automata

I Automata that are both deterministic and codeterministic.
I That is: deterministic automata with deterministic transpose.

1 2 3
b a

b

a

1 2 3
b a

b

a



Bideterministic Finite Automata

I Automata that are both deterministic and codeterministic.
I That is: deterministic automata with deterministic transpose.

1 2 3
b a

b

a

1 2 3
b a

b

a



Bideterministic Finite Automata

I Automata that are both deterministic and codeterministic.
I That is: deterministic automata with deterministic transpose.

1 2 3
b a

b

a

1 2 3
b a

b

a



Bideterministic Finite Automata

I Automata that are both deterministic and codeterministic.
I That is: deterministic automata with deterministic transpose.

1 2 3
b a

b

a

1 2 3
b a

b

a



Bideterministic Finite Automata

I Automata that are both deterministic and codeterministic.
I That is: deterministic automata with deterministic transpose.

1 2 3
b a

b

a

1 2 3
b a

b

a



Bideterministic Finite Automata

I Automata that are both deterministic and codeterministic.
I That is: deterministic automata with deterministic transpose.

1 2 3
a b

b

a

1 2 3
a b

b

a



Bideterministic Finite Automata

I Automata that are both deterministic and codeterministic.
I That is: deterministic automata with deterministic transpose.

1 2 3
a b

b

a

1 2 3
a b

b

a

I Well-understood property, but not in a weighted setting.



Bideterministic Finite Automata

I Automata that are both deterministic and codeterministic.
I That is: deterministic automata with deterministic transpose.

1 2 3
a b

b

a

1 2 3
a b

b

a

I Well-understood property, but not in a weighted setting.



Weighted Automata

I NFA with quantities – so-called weights – assigned to arrows
of the transition diagram.
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I Value of a run: weights of arrows are multiplied.
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Bideterministic Weighted Automata

I Weighted automata that are bideterministic when weights are
forgotten about.

A weighted automaton is thus bideterministic if:
I At most one state has nonzero initial weight.
I At most one transition upon each letter leads from each state.

. . . and moreover:
I At most one state has nonzero final weight.
I At most one transition upon each letter leads to each state.
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Class of weighted automata not considered so far.
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Why Bideterministic Weighted Automata?

Deterministic weighted automata received considerable attention:
I Decidability of determinisability.
I Efficient determinisation algorithms.
I Characterisations of series realised by deterministic automata.

Determinism in WA still far from being understood. . .

. . . for instance, decidability status of determinisability is open:
I Over tropical semirings.
I Over fields.

Not true anymore thanks to J. P. Bell and D. Smertnig.
I . . .
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Why Bideterministic Weighted Automata?

Stronger forms of determinism might be easier to analyse:
I Pure sequentiality: 0/1 initial and final weights.
I Crisp-determinism: 0/1 initial and transition weights.

What about restricting not just the weights, but the concept
of determinism itself?
I Bideterminism is a natural candidate for such a restriction.
I Well-understood for automata without weights.
I Particularly simple theory in the classical setting.
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Bideterministic Weighted Automata: Basic Questions

Basic properties of bideterministic automata without weights:
I All trim bideterministic finite automata are minimal NFAs

(H. Tamm and E. Ukkonen).
I As a consequence, bideterminisability is decidable.

What about weighted automata over a semiring S?
1. Is every trim bideterministic weighted automaton over S

minimal?
2. If not, does it at least always admit a minimal bideterministic

equivalent?
3. Is bideterminisability of weighted automata over S decidable?

The answers depend on S . We explore some particular cases.
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Minimality of BWA: Over Fields

Theorem
Every trim bideterministic weighted automaton over a field is
minimal.

I Automata over fields can be minimised using the
Cardon-Crochemore algorithm based on linear algebra.

It can be shown that the algorithm returns:
I A bideterministic output for bideterministic inputs.
I A bideterministic output of the same size for trim

bideterministic inputs.

As every integral domain can be embedded into a field:

Corollary

Every trim bideterministic weighted automaton over an integral
domain is minimal.
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Minimality of BWA: Over Commutative Rings

Corollary

Every trim bideterministic weighted automaton over an integral
domain is minimal.

One cannot replace integral domains by commutative rings:

Theorem
Let S be a commutative semiring in which st = 0 and s2 6= 0 6= t2

for some s, t ∈ S . Then there is a bideterministic automaton A
over S without a minimal bideterministic equivalent.
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Minimality of BWA: Over Commutative Rings

Theorem
Let S be a commutative semiring in which st = 0 and s2 6= 0 6= t2

for some s, t ∈ S . Then there is a bideterministic automaton A
over S without a minimal bideterministic equivalent.
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Minimality of BWA: Over Positive Semirings

Recall that a semiring is:
I Zero-sum free if a + b = 0 implies a = b = 0.
I Zero-divisor free if ab = 0 implies a = 0 or b = 0.
I Positive if it is both zero-sum free and zero-divisor free.

Examples of positive semirings:
I Tropical semirings, semirings of formal languages, the Boolean

semiring.

Theorem
Every trim bideterministic weighted automaton over a positive
semiring S is minimal.

I Forgetting about weights of any automaton A over S yields
an automaton A′ recognising the support of ‖A‖.

I If A is trim bideterministic, then A′ is as well.
I A′ is minimal, so A has to be minimal.
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Decidability of Bideterminisability: Over Fields

Again, the Cardon-Crochemore algorithm “does everything”.
I Returns a bideterministic output not only for a bideterministic

input automaton. . .
I . . . but also for every bideterminisable input automaton.
I Vector space generated by left quotients of ‖A‖ has specific

structure when A is bideterminisable.

Theorem
Bideterminisability of weighted automata over effective fields is
decidable in polynomial time.

I Just apply the Cardon-Crochemore algorithm and find out
whether the output is bideterministic.
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Theorem
Bideterminisability of weighted automata over tropical semirings
Nmin, Zmin, and Qmin is decidable.

I Tropical semirings are positive.
I If A is bideterminisable, the minimal DFA B recognising

the support of ‖A‖ is bideterministic.
I Given any A, compute B: remove weights and find

the minimal equivalent DFA.
I If B is not bideterministic, A is not bideterminisable.
I If B is empty, A is bideterminisable.
I Otherwise A is bideterminisable iff we can obtain its

equivalent by assigning weights to B.
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I Can weights be assigned to a BFA B so that the resulting

WA B′ satisfies ‖B′‖ = ‖A‖?
Decision algorithm:
I Let x be the vector of unknown weights (x1, . . . , xN).
I Suppose that a successful run of B on w goes ηi times

through an arrow corresponding to xi .
I Let Ψ(w) = (η1, . . . , ηN).
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Decision algorithm (cont.):

I We need Ψ(w) · xT = (‖A‖,w) for all w recognised by B.
I If there is a solution, the system is equivalent to a finite

system for w = w1, . . . ,wM , where the Ψ(wi )
′s form a basis

of the vector space generated by all Ψ(w).
I The set of all Ψ(w) is semilinear, so the wi ’s can be found.
I Solve over N, Z, or Q (ILP or Gaussian elimination).
I If there is no solution, A is not bideterminisable.
I If there is a solution x, we obtain a weighted automaton Bx.
I It remains to check whether indeed ‖Bx‖ = ‖A‖.
I This can be done, as Bx is deterministic.
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I The set of all Ψ(w) is semilinear, so the wi ’s can be found.
I Solve over N, Z, or Q (ILP or Gaussian elimination).

I If there is no solution, A is not bideterminisable.
I If there is a solution x, we obtain a weighted automaton Bx.
I It remains to check whether indeed ‖Bx‖ = ‖A‖.
I This can be done, as Bx is deterministic.
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Thank you for your attention.


