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Notations

 is a simple undirected graph with vertex

set and .

 is the complement graph of where

 For , is the subgraph induced by

 The adjacency matrix of a graph is an matrix

denoted by and defined as: if there is an

edge between vertices and in the graph, and

otherwise.
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Definitions

 A set of vertices S is called a clique if the subgraph

G(S) induced by S is complete; i.e. there is an edge

between any two vertices in G(S) .

 A maximal clique is a clique which is not a proper

subset of another clique.

 A maximum clique is a clique of the maximum

cardinality.
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The Maximum Clique Problem

 The maximum clique problem (MCP) is to find a
maximum clique in a given graph G.

 We will denote the cardinality of the maximum
clique in graph G by .

 The MCP is one of the classical problems in graph
theory with many applications in many fields
including project selection, classification, fault
tolerance, coding, computer vision, economics,
information retrieval, signal transmission, and
alignment of DNA with protein sequences.
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The Maximum Independent Set Problem

 A set of nodes S in a graph G is an independent set

(stable set) if any two vertices in S are not adjacent.

 The maximum independent set problem is to find

the independent set of the maximum cardinality.

 We denote the cardinality of this maximum

independent set by .)(G



The Minimum Vertex Cover Problem

 This is another optimization problem on graphs.

 A vertex cover is defined as a subset of the vertex

set V such that every edge (i , j) in E has at least

one endpoint in that subset.

 The minimum vertex cover problem asks for a vertex

cover of minimum cardinality.



Equivalence

 An independent set in is a clique in and vice

versa. Therefore, the two problems are equivalent.

 If S is an independent set in G, V\S is a vertex

cover of G. Therefore, the maximum independent

set problem is equivalent to the minimum vertex

cover problem.

 The above results show that these three problems

are equivalent and therefore:
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Example

 The corresponding independent set and vertex 

cover in the complementary graph of the previous 

example:
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The Maximum Weighted Clique 

Problem

 In the maximum weighted clique problem there is a

weight associated with each vertex i.

 For any subset define the weight of S to be

 The maximum weight clique problem asks for the

clique of maximum weight.

 The total weight of this maximum weight clique is

called the weighted clique number of and is

denoted by
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Quasi-cliques

 In some applications, Instead of a clique, one is
interested in a dense subgraph.

 We can generalize the definition of cliques by the
concept of quasi-cliques.

 A quasi-clique is a subset of V such that has
at least edges; where .

 One can define several optimization problems for
quasi-cliques. e.g.

 max

 Fix and max ; or fix and max .
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Clique Relaxations

 According to WordNet dictionary, clique is defined as 

“an exclusive circle of people with a common purpose”. 

 Cliques, as described in the dictionary definition, 

represent a natural object of interest for social and 

behavioral sciences. 

 It is not surprising that the first mentioning of this term in 

graph-theoretic context is attributed to researchers in 

social network analysis: in their 1949 paper, Luce and 

Perry used complete subgraphs to model cohesive 

subgroups



Clique Relaxations

Desirable properties of cohesive subgroups:

 Familiarity (high degree of a vertex in the set)

 Reachability (small distance/diameter)

 Robustness (high connectivity)

Clique model is ideal with respect to all these 

properties, however, it is overly restrictive



Relaxing familiarity: k-plex

 A subset of vertices C is called a k-plex if each 

vertex in C has at most k non-neighbors in C

 A 1-plex is a clique

1-plex 2-plex 3-plex

B. Balasundaram, S. Butenko and I. Hicks. Clique relaxation 

models in social network analysis: the maximum k-plex problem. 

Operations Research, Operations Research 59(1):133-142

https://www.researchgate.net/journal/Operations-Research-1526-5463


Relaxing reachability

 A k-clique is a subset of subset of vertices C such 

that the pairwise distance in G between any two 

vertices from C is at most k

 A k-club is a subset of vertices D that indices a 

subgraph of diameter at most k

 1-clique and 1-club correspond to clique

 A k-club is always a k-clique, but the opposite may 

not be true



A 2-club that is not a 2-clique

 C={1,2,3,4} is a 2-clique, but not a 2-club

B. Balasundaram, S. Butenko, and S. Trukhanov. Novel 

approaches for analyzing biological networks.  Journal of 

Combinatorial Optimization, 10: 23-39, 2005. 



Mathematical Formulations

 The maximum clique problem can be formulated

in several ways either as an integer programming

problem or as a continuous global optimization

problem.

 The simplest formulation is the following edge

formulation:
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IP Formulations

 Nemhauser and Trotter proved that if a variable

has integer value 1 in the linear relaxation of

the above problem, then in at least one

optimal solution.

 This suggests an implicit enumeration algorithm via

solving its linear relaxation problem.

 However in most cases, a few variables have

integer values which restricts the use of this method.
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IP Formulations (cont.)

 Let be the set of all maximal independent sets of

G.

 The following formulation is an alternative

formulation for MWCP:
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IP Formulations (cont.)

 The advantage of this formulation over the edge

formulation is that it has a smaller relaxation gap.

 However, the exponential number of constraints

makes it a hard problem.

 It has been proved that even the linear relaxation

of this problem is NP-hard on general graphs.



IP Formulations (cont.)

 In the edge formulation for MCP, since variables are

binary, we can replace the constraints:

 by:

 Subtracting two times the quadratic terms from the

objective function ensures the above constraints to

hold and we can eliminate the constraints:
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IP Formulations (cont.)

 Changing the objective function to minimization, we

obtain the following unconstrained quadratic zero-

one problem:

Where is the adjacency matrix of .

 This gives the following formulation:
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IP Formulations (cont.)

 Replacing by gives similar formulation for MISP.

 Similarly, for the maximum weighted clique problem
we have the following formulation:

Where , and

 The discrete local minimum solutions of the
above problem represent the maximal cliques.
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Continuous Formulation

 Replacing by in the edge formulation for the MCP
results in the following formulation for the maximum
independent set problem:

 Another equivalent formulation is the following
quadratically constrained global optimization problem
proposed by Shor In 1990:
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Continuous Formulations (cont.)

 Consider the following indefinite quadratic

programming problem, called the Motzkin-Strauss

formulation for MCP:

 Proposition: If , then G has a

maximum clique C of size . This maximum can

be attained by setting if and if
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Continuous Formulations (cont.)

 Theorem: If     has exactly    negative eigenvalues, 

then at least        constraints of    are active at 

every global maximum of         over   .

 Corollary: : If     has exactly    negative 

eigenvalues, then the size    of the maximum clique 

is bounded above by          .
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Computational Complexity

 The MCP is one of the first problems shown to be NP-
complete; i.e. unless P=NP, exact algorithms are
guaranteed to return a solution only in a time which
increases exponentially with the number of vertices in
the graph.

 Arora and Safra proved that for some positive the
approximation of the maximum clique within a
factor of is NP-hard.

 The above fact along with practical evidence suggest
that the maximum clique is hard to solve even in graphs
of moderate sizes.
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Enumerative Algorithms

 The first algorithm for enumerating all cliques of an 

arbitrary graph is due to Harray and Ross.

 In 1957, they proposed an inductive method that 

first identified all the cliques of a special graph 

with no more than three cliques.

 The problem on general graphs is reduced to this 

special case. 



Enumerative Algorithms (cont.)

 There are several other algorithms for enumerating 
all cliques in a graph.

 Some of these methods are called vertex sequence 
methods, which produce the cliques of G from the 
cliques of G\{v}.

 Other algorithms are based on backtracking
method, for example the algorithm proposed by 
Bron and Kerbosch.



Branch and Bound Algorithms

 Branch and Bound Algorithms have been widely

used for solving the MCP and MWCP.

 There are three key issues in a branch-and-bound

algorithm for the maximum clique problem:

 Finding a good lower bound, i.e. a clique of large size.

 Finding a good upper bound on the size of the

maximum clique.

 How to branch, i.e. break a problem into smaller

subproblems.



Branch and Bound Algorithms (cont.)

 To obtain a lower bound, most algorithms in the

literature use heuristic methods.

 There are several ways to obtain an upper bound.

One common way is using the graph coloring

algorithms, since the chromatic number of a graph is

an upper bound on its clique number.

 One commonly used branching strategy is to divide

the problem into one with (vertex i is in the

maximum clique) and the other with .0=ix

1=ix



The Best Complexity Algorithms

 In the following paper, Tarjan and Trojanowski

proposed a recursive algorithm for the maximum 

independent set problem:

 R. E. Tarjan and A. E. Trojanowski. Finding a maximum 

independent set. SIAM Journal on Computing, 6:537-

546, 1977.

 They show that their algorithm has a time 

complexity of             , where n is the number of 

vertices of the graph.
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The Best Complexity Algorithms (cont.)

 This time bound illustrates that it is possible to solve 
a NP-complete problem much better than the simple 
enumerative approach. 

 In 1986, Robson proposed a modified version of 
the recursive algorithm of Tarjan and Trojanowski.

 He showed through a detailed case analysis that 
this algorithm had a time complexity of            
where n is the number of vertices.

 J. M. Robson, Algorithms for maximum independent sets. 
Journal of Algorithms, Vol. 7: 425-440,1986.
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Wilf’s Recursive Algorithm

 Here we briefly discuss Wilf’s recursive algorithm 
for the maximum independent set problem.

 For any fixed vertex   , there are two kinds of 
independent sets: those that contain    and those 
that don’t contain    .

 If an independent set    contains   , then the vertices 
that are adjacent to    (        ) cannot be in the 
maximum independent set.

 So we need to continue our search in the smaller 
graph                      .                  
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Wilf’s Recursive Algorithm (cont.)

 Now consider an independent set doesn’t contain    . 

 Then we have to search in            . 

 In either of the two cases, the original problem has 

been reduced to a smaller one.

 Suppose the function                 returns the 

maximum independent set of G. we have the 

following recursive relation to solve the problem:
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Wilf’s Recursive Algorithm (cont.)

 We obtain the following recursive algorithm:
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Wilf’s Recursive Algorithm (cont.)

 Suppose         is the total amount of computational 

labor that we do in order to find               .

 In the first step we check for edges in the graph. In 

the worst case we have to look all data (graph) 

which is          (we can describe a graph by a list of               

0’s and 1’s).

 Therefore:
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Wilf’s Recursive Algorithm (cont.)

 Let                             and take the maximum of the 

previous relation over all graphs G of n vertices to get:

since the graph                     might have as many as        

vertices.

 Solving this recurrent inequality results in:

 This an improvement of the simplest algorithm of 

examining all the subsets of    (        ). 
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Wilf’s Recursive Algorithm (cont.)

 We can obviously do better if we choose     in 
such a way as to be certain that it has at least 
two neighbors.

 This will not affect the number of vertices of           , 
but at least will reduce the number of vertices of       

as much as possible.

 If there is no such    in G, the G would contain only 
vertices with 0 or 1 degree. In that case, a 
maximum independent set contains one vertex from 
each of the     edges and  all the isolated vertices.
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Wilf’s Recursive Algorithm (cont.)

 The maximum independent set’s cardinality will be:

 Algorithm:

E(G)V(G)maxset −=

.end
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});{:

;

else

then

if

);procedure
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Wilf’s Recursive Algorithm (cont.)

 By applying the same reasoning as before, we 

obtain:

 This implies that:
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Wilf’s Recursive Algorithm (cont.)

 Exercise: improve the above algorithm to maxset3 

whose complexity time will be order of           .

 Hint: The trivial case will occur if G has no vertex of 

degree     3, otherwise choose      of degree    3 and 

proceed as in maxset2.

 Reference:

 H. S. Wilf, algorithms and complexity, Prentice-Hall, 

Englewood Cliffs, NJ, 1986.
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Heuristics

 Because of the computational complexity of the 

maximum clique problem, much effort has been 

directed towards devising efficient heuristics.

 The main drawback of these heuristic is that usually 

there is no theoretical guarantee on their 

performance.

 Therefore, their evaluation is based essentially 

based on extensive experimentation.



Heuristics (cont.)

 There are several local search heuristics for the 
maximum clique problem.

 Although most of these heuristics find globally optimal 
solutions, the main difficulty is the fact that we cannot 
verify global optimality (lack of certificate of 
optimality). 

 Therefore, many variations of the basic local search 
procedure  has been devised which try to avoid local 
optima.



Heuristics (cont.)

 Several examples of such metaheuristic methods have been 
applied to the maximum clique problem:

 Simulated Annealing

 Neural Networks

 Genetic Algorithms

 Tabu Search, . . .

⚫ heuristic (adj.), “serving to discover or find out,” irregular
formation from Gk. heuretikos “inventive," related to
heuriskein (ευρίσκω) “to find”

⚫ The word “Eureka" comes from ancient Greek eurika, “I have
found (it)".

https://en.wiktionary.org/wiki/%CE%B5%CF%85%CF%81%CE%AF%CF%83%CE%BA%CF%89


Bounds

 The best known lower bound based on degrees of

vertices is given by Caro and Tuza, and Wei:

 In 1967, Wilf showed that:

Where is the spectral radius of the adjacency

matrix of G (which is, by definition, the largest

eigenvalue of ).
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Bounds (cont.)

 Denote by the number of eigenvalues of that

do not exceed -1, and by the number of zero

eigenvalues. Amin and Hakimi proved that:

where the equality holds if G is a complete

multipartite graph.
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Application:  Matching Molecular 

Structures

 Two graphs and are called isomorphic if there

exists a one-to-one correspondence between their

vertices, such that adjacent pairs of vertices in are

mapped to adjacent pairs of vertices in .

 A common subgraph of two graphs and consists

of subgraphs and of and , respectively,

such that is isomorphic to .

 The largest such common subgraph is the maximum

common subgraph (MCS).
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Matching Molecular Structures (cont.)

 For a pair of three-dimensional chemical molecules

the MCS is defined as the largest set of atoms that

have matching distances between atoms.

 For a pair of graphs,              and              , their 

correspondence graph C has all possible pairs          

where                , as its vertices and two vertices       

and are connected in C if the values of the 

edges from    to     in     and from    to   in     are 

the same.
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Matching Molecular Structures (cont.)

 It can be shown that maximum common subgraphs in

and correspond to cliques in their

correspondence graph C.

 Therefore, one can find the maximum common 

subgraph of two arbitrary graphs by finding a 

maximum clique on their correspondence graph.

 The MCS between two molecules is an obvious 

measure of structural similarity and gives important 

information about the two molecules. 
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Challenging Problem

Algorithm for Correspondence Graphs with Low Density

Design an efficient algorithm for the maximum clique 

problem tailored to correspondence graphs resulting 

from matching of three-dimensional chemical molecules.



Matching Molecular Structures (cont.)

 Details about this method can be found in:

 E. Gardiner, P. Artymiuk, and P. Willett. Clique-detection 

algorithms for matching three-dimensional molecular 

structures. Journal of Molecular Graphics and 

Modelling, 15:245–253, 1997.



Application: Macromolecular Docking

 Given two proteins, the protein docking problem is

to find whether they interact to form a stable

complex, and if they do, then how.

 This problem is fundamental to all aspects of

biological function.

 Given two proteins, the docking problem can be

experimentally solved.



Macromolecular Docking (cont.)

 However, the large number of known protein

structures urges the need for development of

reliable theoretical protein docking techniques.

 One of the approaches to the macromolecular

docking problem consists in representing each of

two proteins as a set of potential hydrogen bond

donors and acceptors and using a clique-detection

algorithm to find maximally complementary sets of

donor/acceptor pairs.



Macromolecular Docking (cont.)

 Details about this topic can be found in:

 E. Gardiner, P. Willett, and P. Artymiuk. Graph-theoretic 

techniques for macromolecular docking. J. Chem. Inf. 

Comput., 40: 273–279, 2000.



Comparative Modeling of Protein 

Structure

 The rapidly growing number of known protein
structures requires the construction of accurate
comparative models.

 Proteins are large organic compounds made of
amino acids arranged in a linear chain and joined
together.

 Each of these amino acids is called a residue.

 Each residue has several possible conformations.

 We can compare different protein structures using
clique finding algorithms.



Comparative Modeling of Protein 

Structure (cont.)

 We construct a graph in which vertices correspond

to each possible conformation of a residue in an

amino acid sequence.

 Edges connect pairs of residue conformations

(vertices) that are consistent with each other; i.e.

clash-free and satisfying geometrical constraints.

 Edges are drawn between different residue

conformations; so that there is no edge between to

different conformations of a single residue.



Comparative Modeling of Protein 

Structure (cont.)

 Based on the strength of interaction between the

atoms corresponding to the two vertices, weights

are assigned to the edges.

 Then the cliques with the largest weights in the

constructed graph represent the optimal

combination of the various main-chain and side-

chain possibilities, taking the respective

environments into account.



Applications in Clustering

 The essence of clustering is partitioning the elements 
in a certain dataset into several distinct subsets 
(clusters) grouped according to an appropriate 
similarity criterion

 The retrieval of similar data is an obvious
application of the maximum clique problem.

 A graph is constructed with vertices corresponding
to data items and the edges connect vertices that
are similar.

 A clique in such a graph is a cluster.



MCP in Very Large Graphs

 The graphs we have to deal with in some 
applications are very massive. Examples are the 
WWW graph and a call graph.

 The various gigantic graphs that have lately 
attracted notice share some properties:

 They tend to be sparse: The graphs have relatively few 
edges, considering their vast numbers of vertices.

 They tend to be clustered. In the World Wide Web, two 
pages that are linked to the same page have an 
elevated probability of including links to one another. 



MCP in Very Large Graphs (cont.)

 They tend to have a small diameter. The diameter of a 

graph is the longest shortest path across it. Graphs 

nearer to the minimum than the maximum number of 

edges might be expected to have a large diameter. 

Nevertheless, the diameter of the Web and other big 

graphs seems to hover around the logarithm of n, which 

is much smaller than n itself. 

 Graphs with the three properties of sparseness, 

clustering and small diameter have been termed 

"small-world" graphs.



The Internet Graph



MCP in Very Large Graphs (cont.)

 In many cases, the data associated with massive 

graphs is too large to fit entirely inside the 

computer’s internal memory. Therefore a slower 

external memory (for example disks) needs to be 

used.

 The input/output communication (I/O) between 

these memories can result in an algorithm’s slow 

performance.



The Call Graph

 In the call graph, the vertices are telephone 
numbers, and two vertices are connected by an 
edge if a call was made from one number to 
another.

 A call graph was constructed with data from AT&T 
telephone billing records. Based on one 20-day 
period it had 290 million vertices and 4 billion 
edges.

 The analyzed one-day call graph had 53,767,087 
vertices and over 170 millions of edges



The Call Graph (cont.)

 This graph appeared to have 3,667,448 connected 

components, most of them tiny.

 A giant connected component with 44,989,297 

vertices (more than 80 percent of the total) was 

computed.

 The distribution of the degrees of the vertices 

follows the power-law distribution (see later 

discussion). 



A GRASP-Based Algorithm

 In the call graph, the only feasible strategy to find the 
cliques is a probabilistic search that finds large cliques 
without proving them maximal.

 GRASP is an iterative method that at each iteration 
constructs, using a greedy function, a randomized 
solution and then finds a locally optimal solution by 
searching the neighborhood of the constructed solution.

 This is a heuristic approach which gives no guarantee 
about quality of the solutions found, but proved to be 
practically efficient for many combinatorial optimization 
problems.



A GRASP-Based Algorithm (cont.)

 To describe a GRASP, one needs to specify a 

construction mechanism and a local search 

procedure.

 The construction phase of the GRASP for maximum 

clique problem builds a clique, one vertex at a time. 

 It uses vertex degrees as a guide for construction 

and constructs a clique in a greedy manner.



A GRASP-Based Algorithm (cont.)

 In each step, the algorithm selects the vertex with 

the highest degree, and then updates the graph by 

eliminating all the vertices which are not connected 

to the selected vertex. 

 Local search can be implemented in many ways.

 A simple (2,1) -exchange approach seeks a vertex 

in the clique whose removal allows two adjacent 

vertices not in the clique to be included in the clique, 

thus increasing the clique size by one.



A GRASP-Based Algorithm (cont.)

 Using this local search approach, we can search the 

feasible region and find local optimal solutions. 

 Repeating this procedure several times, we can find 

a clique of large size. 

 The GRASP described in this section requires access 

to the edges and vertices of the graph. 

 This limits its use to graphs small enough to fit in 

memory.



A GRASP-Based Algorithm (cont.)

 We can develop a semi-external procedure that 
works only with vertex degrees and a subset of the 
edges in-memory, while most of the edges can be 
kept in secondary disk storage.

 The procedure starts with applying GRASP to the 
graph induced by a subset of edges. This gives us 
a clique with size q.

 Because vertices with degree less than q cannot be in 
a maximum clique, we can eliminate those and 
apply the algorithm to the reduced graph.



A GRASP-Based Algorithm (cont.)

 The algorithm continues to run these two steps until 
no more reduction is possible. 

 Reducing the size of the graph allows GRASP to 
explore portions of the solution space at greater 
depth, since GRASP iterations are faster on smaller 
graphs.

 Using the above algorithm, Abello et al. found 
cliques of size 30 in the call graph, which are 
almost surely the largest. Remarkably, there are 
more than 14,000 of these 30-member cliques.



MCP in Very Large Graphs (cont.)

 The size of real-life massive graphs, many of which 

cannot be held even by a computer with several 

gigabytes of main memory, vanishes the power of 

classical algorithms and makes one look for novel 

approaches.

 In some cases not only is the amount of data huge, 

but the data itself is not completely available. e.g. 

the largest search engines are estimated to cover 

only 38% of the Web.



MCP in Very Large Graphs (cont.)

 Some approaches were developed for studying the 

properties of real-life massive graphs using only the 

information about a small part of the graph.

 Another methodology of investigating real-life massive 

graphs is to use the available information in order to 

construct proper theoretical models of these graphs.

 One of the earliest attempts to model real networks 

theoretically goes back to the late 1950’s, when the 

foundations of random graph theory had been 

developed.



Random Graphs

 One way to model massive datasets is uniform random 
graphs.

 One example of uniform graphs is as follows: each pair 
of vertices is chosen to be linked by an edge randomly 
and independently with probability p.

 There are also more general ways of modeling random 
graphs which deal with random graphs with a given 
degree sequence.

 One important model of such random graphs with a 
given degree sequence is the power-law random 
graph model.



Random Graphs (cont.)

 If we define y to be the number of nodes with degree 
x, then according to the power law model:

 Equivalently, we can write:

 Therefore, according to the power-law model the
dependency between the number of vertices and the
corresponding degrees can be plotted as a straight
line on a log-log scale.
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The Call Graph (cont.)

 Aiello, Chung and Lu investigated the same call 

graph that was analyzed by Abello et al. 

 Comparison between the experimental results 

presented by Abello et al. with the theoretical 

results obtained by Aiello et al. shows that the 

power-law model fairly well describes some of 

the real-life massive graphs, such as the call 

graph.



Challenging Problem

Algorithm for Massive Graphs with Very Low Density

Design an efficient algorithm together with a data 

base for the maximum      –clique problem tailored to 

massive graphs characterized by very low density and 

by the node degree distribution following a power-

law. Real world call graphs serve as an excellent test 

bed.





The Call Graph (cont.)

 Some references for further study:

 J. Abello, P. M. Pardalos, and M. G. C. Resende. On 

maximum clique problems in very large graphs. In J. 

Abello and J. S. Vitter, editors. External Memory 

Algorithms, pages 119–130.

 J Abello, PM Pardalos, MGC Resende. Handbook of 

massive data sets. Dordrecht, The Netherlands: 

Kluwer, 2002.



The Call Graph (cont.)

 American Scientist (January-February 2000, Volume 88, 
No. 1), “Computing Science Graph Theory in Practice: Part 
I by Brian Hayes” 
(http://www.americanscientist.org/issues/pub/graph-
theory-in-practice-part-ii/1) 

 American Scientist (September-October 2006, Volume 94, 
Number 5), “Connecting the Dots: Can the tools of graph 
theory and social-network studies unravel the next big 
plot?”

(http://www.americanscientist.org/issues/pub/conne
cting-the-dots/1)

http://www.americanscientist.org/issues/pub/graph-theory-in-practice-part-ii/1
http://www.americanscientist.org/issues/pub/connecting-the-dots/1


The Market Graph

 Financial markets can also be represented as 
graphs.

 For a stock market one natural representation is 
based on the cross correlations of stock price 
fluctuations.

 Each stock is represented by a vertex, and two 
vertices are connected by an edge if the correlation 
coefficient of the corresponding pair of stocks 
(calculated for a certain period of time) is above a 
prespecified threshold                .11, − 



The Market Graph (cont.)

 Boginski et al. construct a market graph from the set 

of financial instruments traded in the U.S. stock 

markets. 

 They calculate the cross-correlations between each 

pair of stocks using the following formula:

where                 defines the return of the stock i

for day t.
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The Market Graph (cont.)

 Different values of    define the market graphs with 

the same set of vertices, but different sets of edges.

 It is easy to see that the number of edges in the 

market graph decreases as the threshold value  

increases.

 Since the number of edges in the market graph 

depends on the chosen correlation threshold   , we 

should find a value     that determines the 

connectivity of the graph.
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The Market Graph (cont.)

 So, if we decrease   , after a certain point, the 

graph will become connected.

 Boginski, Butenko and Pardalos conducted a series 

of computational experiments for checking the 

connectivity of the market graph using the breadth-

first search technique, and obtained a relatively 

accurate approximation of the connectivity 

threshold:                   .
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The Market Graph (cont.)

 They also showed that If we specify a small value of 

the correlation threshold   , such as        ,             ,      

,            ; the distribution of the degrees of 

the vertices is very “noisy” and does not have any 

well-defined structure.

 Note that for these values of    the market graph is 

connected and has a high edge density.

 The market graph structure seems to be very 

difficult to analyze in these cases.

 0= 05.0=
1.0= 15.0=





The Market Graph (cont.)

 However, as the edge density of the graph decreases, 
the degree distribution more and more resembles a 
power law.

 In fact, for             this distribution is approximately a 
straight line in the log-log scale, which is exactly the 
power law distribution.

 An interesting observation was that the slope of the 
lines (which is equal to the parameter    of the power-
law model) is rather small.

 Intuitively, one can expect a large clique in a graph 
with a small value of the parameter    .

2.0







The Market Graph (cont.)

 Another combinatorial optimization problem 
associated with the market graph is finding 
maximum independent sets in the graphs with a 
negative correlation threshold    .

 Clearly, instruments in an independent set will be 
negatively correlated with each other, and 
therefore form a diversified portfolio.

 The financial interpretation of the clique in the 
market graph is that it defines the set of stocks 
whose price fluctuations exhibit a similar behavior.





The Market Graph (cont.)

 In the modern stock market there are large groups of 
instruments that are correlated with each other.

 References: 

 Boginski V, Butenko S, Pardalos PM. On structural properties 
of the market graph. In: Nagurney A, editor. Innovations in 
financial and economic networks. Edward Elgar Publishers; 
2003.

 Boginski V, Butenko S, Pardalos PM. Statistical analysis of 
financial networks. Computational Statistics and Data 
Analysis 2005;48(2):431–43.

 Boginski V, Butenko S, Pardalos PM. Mining market data: A 
network approach. Computers & Operations Research, 33: 
3171-3184, 2006.



Recent results

A. Vizgunov, B. Goldengorin, V. Kalyagin, A. Koldanov, P. 
Koldanov, P. M. Pardalos. Network approach for the Russian 
stock market. Computational Management Science, Comput. 
Manag. Sci. 11(1-2): 45-55 (2014).

Abstract

We consider a market graph model of the Russian stock market. To study the
peculiarity of the Russian market we construct the market graphs for different
time periods from 2007 to 2011. As characteristics of constructed market
graphs we use the distribution of correlations, size and structure of maximum
cliques, and relationship between return and volume of stocks. Our main
finding is that for the Russian market there is a strong connection between the
volume of stocks and the structure of maximum cliques for all periods of
observations. Namely, the most attractive Russian stocks have a strongest
correlation between their returns. At the same time as far as we are aware this
phenomenon is not related to the well developed USA stock market.

https://dblp.uni-trier.de/db/journals/cms/cms11.html#VizgunovGKKKP14


More results

Grigory A. Bautin, Valery A. Kalyagin, Alexander P. Koldanov, 
Petr A. Koldanov, Panos M. Pardalos. Simple measure of 
similarity for the market graph construction. Computational 
Management Science, Comput. Manag. Sci. 10(2-3): 105-124 (2013)

Abstract

A simple measure of similarity for the construction of the market graph is proposed. The
measure is based on the probability of the coincidence of the signs of the stock returns.
This measure is robust, has a simple interpretation, is easy to calculate and can be used
as measure of similarity between any number of random variables. For the case of
pairwise similarity the connection of this measure with the sign correlation of Fechner is
noted. The properties of the proposed measure of pairwise similarity in comparison
with the classic Pearson correlation are studied. The simple measure of pairwise
similarity is applied (in parallel with the classic correlation) for the study of Russian and
Swedish market graphs. The new measure of similarity for more than two random
variables is introduced and applied to the additional deeper analysis of Russian and
Swedish markets. Some interesting phenomena for the cliques and independent sets of
the obtained market graphs are observed.

https://dblp.uni-trier.de/db/journals/cms/cms10.html#BautinKKKP13


Vertex Coloring Problem

 A proper (vertex) coloring of G is an assignment of

colors to its vertices so that no pair of adjacent

vertices has the same color.

 If there exists a coloring of G that uses no more

than k colors, we say that G admits a k-coloring.

 The minimal k for which G admits a k-coloring is

called the chromatic number and is denoted by .

 The graph coloring problem is to find as well as

the partition of vertices induced by a -coloring.
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Vertex Coloring Problem (cont.)

 Example: we need at least 4 colors for the following

graph:

5 6

2

31

4



The Minimum clique partition problem

 Minimum clique partition problem is to partition
vertices of a graph G into minimum number of
cliques.

 In fact, a coloring induces a partition of the vertex
set such that the elements of each set in the
partition are pairwise nonadjacent.

 In the complement graph , this means a partition
of vertex set into cliques.

 Therefore, minimum clique partition problem and
vertex coloring problem are equivalent.

G



The Minimum clique partition problem

 Example: a vertex coloring of is a clique partition

in .
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Example: Covering Locations

 Given a set of demand points and a set of potential
sites for locating facilities, a demand point is said to
be covered by a facility if it is located within a pre-
specified distance from that facility.

 Mandatory coverage problems aim to cover all
demand points with the minimum number of
facilities.

 Here, we consider an application of mandatory
coverage problem arising in cytological screening
tests for cervical cancer.



Example: Covering Locations (cont.)

 In this application, a cervical specimen on a glass 

slide has to be viewed by a screener device.

 The screener is relocated on the glass slide in order 

to explore n demand points in the specimen.

 The goal is to minimize the number of viewing 

locations (sites).

 The area covered by the screener is a square and 

screener can move in any of four directions parallel 

to the sides of the rectangular glass slide.



Example: Covering Locations (cont.)

 Therefore, we need to cover n specific points in the 

slide by squares called tiles.

tiles

Demand 

Points



Example: Covering Locations (cont.)

 Interestingly, this problem can be formulated as 

minimum clique partition problem.

Lemma: The following two statements are 

equivalent:

1. There exists a covering of n demand points in the 

rectangle using k tiles.

2. Given n tiles centered in the demand points, there 

exist k points in the rectangle such that each of the 

tiles contains at least one of them.



Example: Covering Locations (cont.)

 In the previous example this means:

 In order to model the problem as minimum clique 
partition, consider the graph G = (V,E) associated with 
this problem.



Example: Covering Locations (cont.)

 The set of vertices V = {1,2,…,n} corresponds to the 
set of demand points.

 Consider the set T = {t1, t2 ,…, tn } tiles, each 
centered in a demand point.

 Two vertices i and j are connected by an edge if 
and only if .

 In order to cover the demand points with minimum 
number of tiles, or the same, minimize the number of 
viewing locations, it suffices to solve the minimum 
clique partition problem in the constructed graph

ji tt 



Example: Covering Locations (cont.)

 Details about this example can be found in the 

following:

 L. Brotcorne, G. Laporte, and F. Semet. Fast heuristic for 

large scale covering location problems. Computers & 

Operations Research, 29:651–665, 2002.



Applications in Coding Theory

 Error correcting codes lie in the heart of digital 
technology; making cell phones, compact disk 
players and modems possible.

 A fundamental problem of interest is to send a 
message across a noisy channel with a maximum 
possible reliability.

 In coding theory, one wishes to find a binary code 
as large as possible that can correct a certain 
number of errors for a given size of the binary 
words (vectors).



Applications in Coding Theory (cont.)

 Computing estimates of the size of correcting codes 
is important from both theoretical and practical 
perspectives.

 For a binary vector            denote by        the set 
of all vectors which can be obtained from    (not
necessarily of dimension n) as a consequence of 
certain error e, such as deletion or transposition of 
bits.

 Examples of the error e are single deletion and 
single transposition.
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Applications in Coding Theory (cont.)

 A subset             is said to be an e-correcting code 

if                        for all                 .

 For example, if        and             and we’re 

considering single deletion, then                             

 The problem of our interest is to find the largest 

correcting codes.
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Applications in Coding Theory (cont.)

 Consider a graph     having a vertex for every 
vector for every            .

 If                        for some               and       , then 
there is an edge between vertices corresponding to    
and    . 

 A correcting code corresponds to an independent 
set in     .

 Hence, the largest e-correcting code can be found 
by solving the maximum independent set problem in 
the considered graph
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Challenging Problem

Algorithm for Conflict Graphs in Coding Theory

Design an efficient algorithm for the minimum stable set 

partition problem tailored to conflict graphs resulting 

from applications in coding theory.



Benchmark Graphs

 In order to facilitate comparison among different 

algorithms, a set of benchmark graphs arising from 

different applications and problems was constructed in 

conjunction with the 1993 DIMACS challenge on cliques, 

coloring and satisfiability.

 In the following paper, Hasselberg, Pardalos and 

Vairaktarakis have generated different test problems 

that arise from a variety of practical applications. 

 J. Hasselberg, P. M. Pardalos and G. Vairaktarakis, Test case generators 

and computational results for the maximum clique problem, Journal of 

Global Optimization, 3, 463- 482, 1993.



Generating Hamming Graphs

 The Hamming distance between the binary 
vectors                  and                  is defined as 
the number of indices i such that            and          .

 It is well known that a binary code consisting of a 
set of binary vectors any two of which have 
Hamming distance greater or equal to    can correct 

errors.

 A coding theorist would like to find the maximum 
number of binary vectors of size    with Hamming 
distance    . This number is denoted by          .
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Generating Hamming Graphs (cont.)

 A Hamming graph          has the vertex set of all 

the binary vectors of size    and two vertices are 

adjacent if their Hamming distance is at least   .

 is the size of the maximum clique in          .

 has     vertices and the degree of each 

vertex is        .

 There is a code for generating           for all n and 

d in the aforementioned paper.
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Generating Hamming Graphs (cont.)

 The main idea in generating Hamming graphs is to 
represent each binary vector by a decimal number 
as:

 So: 

 The graph generator uses two integer variables v1 
and v2 to represent the binary vectors.
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Generating Hamming Graphs (cont.)

 Since the graph is undirected, the adjacency matrix 

is symmetric and v1 and v2 are assigned every 

possible value so that                        .

 To find whether v1 and v2 are adjacent or not, we 

have to check in how many positions these vectors 

differ by checking the r-th digit of the two vectors.

 This is done by testing whether                              .

 This has to be done for all possible pairs of v1 and 

v2.
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Johnson Graphs

 Another problem arising from the coding theory is 
to find a weighted binary code, That is to find the 
maximum number of binary vectors of size    that 
have precisely    1’s and the Hamming distance of 
any two of these vectors is   .

 A binary code consisting of vectors of size    and 
weight    and distance d can correct         errors.

 A Johnson graph             is a graph with all the 
binary vectors of length    and  weight     as 
vertices.
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Johnson Graphs (cont.)

 two vertices are adjacent if their Hamming distance 

is at least   .

 has      vertices and the degree of each 

vertex is:

 Similar to Hamming graphs, Hasselberg et al. 

develop codes for generating Johnson graphs as 

test cases. 
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Graphs with Specified Clique Number

 Sanchis proposes an algorithm for generating instances 

of the vertex covering problem.

 Hasselberg, Pardalos and Vairaktarakis generate 

instances of the vertex covering problem according to 

the Sanchis’ algorithm and then convert them into 

instances of the maximum clique problem by using the 

complementary graph.

 If             is a graph with minimum vertex cover of size    

generated by Sanchis’ algorithm, then the complement 

graph              has maximum clique of size        .  
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Graphs with Specified Clique Number 

(cont.)

 Sanchis’ algorithm for producing a graph with        

and         with minimum vertex cover of size   :

 Let           . Choose a partition of integer    into    parts   

where                        such that

 Form   cliques with size           

 For each              choose        vertices from the i-th

clique to be in the vertex cover.

 Add          additional edges to the graph in such way 

that each added edge is incident on at least one of the 

selected cover vertices.   
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Graphs with Specified Clique Number 

(cont.)

 It can be shown that the graph             with          

and         and a minimum vertex cover of size    

does not exist unless:



 And                                         .

Where            and           .
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Keller's Conjecture 

 Minkowski's conjecture:

 In a lattice tiling of Rn by translates of a unit hypercube, 

there exists two cubes that share (n - 1) dimensional 

face. 

 proven by Hajós in 1950 

 Keller’s conjecture: (1930)

 Minkowsk’s theorem can be generalized as the lattice 

assumption might not be necessary.



Keller's Conjecture (cont.)

 Keller’s conjecture:

 1940: Perron showed in 1940 that it true for n ≤ 6

 1992: Lagarias and Shor found counter-example for 

n ≥10 

 2002: Mackey found counter-example for n ≥ 8

 2011: n = 7 has been solved

Jennifer Debroni, John D. Eblen, Michael A. 

Langston, Wendy Myrvold, Peter W. Shor, Dinesh

Weerapurage. A complete resolution of the Keller 

maximum clique problem. SODA 2011:129-135, 2011



Keller's Conjecture (cont.)

 Keller graphs by Corrádi and Szabó:

 For any given natural number n, constructed the so-
called Keller graph   n. The nodes are vectors of length 
n with values of 0; 1; 2 or 3. Any two vectors are 
adjacent, if and only if in some of the n coordinates, 
they differ by precisely two (in absolute value). 

 Properties of Keller Graphs:

 Dense graphs where the clique size is bounded by 2n

 There is an counterexample to Keller's conjecture, if and 
only if    n has a clique of size 2n (Corrádi and Szabó).







A Comprehensive Survey

 A comprehensive survey of results concerning 

algorithms, complexity, and applications of the 

maximum clique problem can be found in:

 I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. 

The maximum clique problem. In D.-Z. Du and P. M. 

Pardalos, editors, Handbook of Combinatorial 

Optimization, pages 1–74. Kluwer Academic Publishers, 

Dordrecht, The Netherlands, 1999.



A Comprehensive Survey (cont.)

 An old complete survey about the graph coloring 

problem can be found in:

 P. M. Pardalos, T. Mavridou, and J. Xue. The Graph 

coloring problem: A bibliographic survey. In In D.-Z. Du 

and P. M. Pardalos, editors, Handbook of Combinatorial 

Optimization, Vol. 2, Pages 331-396. Kluwer Academic 

Publishers, Dordrecht, The Netherlands, 1999.



Quantum Computing Approaches

 Keren Censor-Hillel, Orr Fischer, François Le Gall, Dean 
Leitersdorf, Rotem Oshman:
Quantum Distributed Algorithms for Detection of  
Cliques. ITCS 2022: 35:1-35:25

 Finding Maximum Cliques on the D-Wave Quantum Annealer, Chapuis, 
Guillaume Djidjev, Hristo Nikolov Hahn, Georg Rizk, Guillaume 
Alexandre, https://www.osti.gov/pages/biblio/1438358

 A Comparison of  Quantum Algorithms for the Maximum Clique 
Problem, Andrew R. Haverly, 
https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=11892&con
text=theses

https://dblp.uni-trier.de/pid/172/0900.html
https://dblp.uni-trier.de/pid/10/5740.html
https://dblp.uni-trier.de/pid/179/4825.html
https://dblp.uni-trier.de/pid/02/2005.html
https://dblp.uni-trier.de/db/conf/innovations/innovations2022.html#Censor-HillelFG22
https://www.osti.gov/pages/biblio/1438358


Handbook of Combinatorial Optimization

Pardalos, Panos M.; Du, Ding-Zhu; Graham, 

Ronald L. (Eds.)

Handbook of Combinatorial Optimization

2nd ed. 2013, X, 3370 pages, 7 volumes

http://www.springer.com/mathematics/book/

978-1-4419-7996-4



Recent computational algorithms

Mikhail Batsyn, Boris Goldengorin, Evgeny Maslov, 
Panos M. Pardalos. Improvements to MCS algorithm 
for the maximum clique problem. Journal of 
Combinatorial Optimization, J. Comb. 
Optim. 27(2): 397-416 (2014).

CliSAT: a new exact algorithm for hard maximum 
clique problems. P San Segundo, F Furini, D 
Alvarez, P Pardalos - European Journal of 
Operational Research (online- Oct 2022) 
https://www.sciencedirect.com/science/article/abs/
pii/S0377221722008165

https://dblp.uni-trier.de/db/journals/jco/jco27.html#BatsynGMP14
https://scholar.google.com/scholar_url?url=https://www.sciencedirect.com/science/article/pii/S0377221722008165&hl=en&sa=X&d=15822944471789107869&ei=rQpXY4PJNY3KyQTihpn4DA&scisig=AAGBfm0hL-EFQeLckkB2iOsEzeXgEjEkMQ&oi=scholaralrt&hist=7rBzAKsAAAAJ:12873836720042284631:AAGBfm1CxW3Hb2ESVmEpyTHdMLPOsxg_ug&html=&pos=0&folt=kw


Recent computational algorithms

 Evgeny Maslov, Mikhail Batsyn, Panos M. Pardalos. Speeding up 
branch and bound algorithms for solving the maximum clique 
problem. Journal of Global Optimization, J. Glob. Optim. 59(1): 1-
21 (2014)

Abstract

In this paper we consider two branch and bound algorithms for the maximum clique 
problem which demonstrate the best performance on DIMACS instances among the 
existing methods. These algorithms are MCS algorithm by Tomita et al. (2010) and 
MAXSAT algorithm by Li and Quan (2010a, b). We suggest a general approach which 
allows us to speed up considerably these branch and bound algorithms on hard 
instances. The idea is to apply a powerful heuristic for obtaining an initial solution of 
high quality. This solution is then used to prune branches in the main branch and bound 
algorithm. For this purpose we apply ILS heuristic by Andrade et al. (J Heuristics 
18(4):525–547, 2012). The best results are obtained for p_hat1000-3 instance 
and gen instances with up to 11,000 times speedup.

https://dblp.uni-trier.de/db/journals/jgo/jgo59.html#MaslovBP14
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